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Latest QCD results from LEP

1 Quark and gluon jet fragmentation
functions
(OPAL)

2 Unbiased gluon jets, with the “jet boost”
algorithm
(OPAL)

3 Coherence soft particle production in
three-jet events
(DELPHI)

4 o from event shapes
(LEP combined, with new published input from

ALEPH and L3)
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Scaling violations of quark and gluon
jet fragmentation functions

Define the fragmentation function

]‘ de(xE7 Q)
]Vjet(Q) de

for a parton a fragmenting into hadrons with the
momentum fractions 2z = Ehadron/ Eiet

D, =

Several ways to identify jets in ete™ — qq(g) events:

e Biased jets (using Durham jet-finder to select 3-jet
events):

— b-tagging (neural network) = samples enriched
in udsc, b and gluon jets.

— Energy-ordering = samples enriched in quark
and gluon jets.

e Unbiased quark jets, defined by hemispheres of
inclusive hadronic events:

— b-tagging = unbiased udsc and b jets

e Unbiased gluon jets, using the “jet boost”
algorithm
(NB previous measurements have been published using other

algorithms)

Can measure fragmentation functions in all cases.

Matthew Ford Moriond Electroweak, La Thuile, Italy, 22nd March 2004 3



Fragmentation functions (contd.)

e NLO predictions exist for ()-dependence of
quark and gluon fragmentation functions, but
not explicitly for xg-dependence (predictions are
based on fits to data).

e All theory predictions are based on unbiased jets
(not dependent on choice of jet-finder).

e Must choose appropriate energy scale for each jet
when comparing with theory:

— () = +/s/2 for unbiased quark jets
— Qjet = Ejersin(0/2) for biased jets, where 6 is

the angle to the nearest jet.
e Measurements allow comparisons between:

— Data and theory
— Data and MC
— Biased and unbiased jets
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Scale dependence of quark jet fragmentation functions
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Scale dependence of quark/gluon jet fragmentation functions

Flavour-inclusive quark jets
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x g dependence of quark jet fragmentation functions

udsc quark jets
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xr dependence of quark/gluon jet fragmentation functions

Flavour-inclusive quark jets
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Gluon jets
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Fragmentation functions (contd.)

Conclusions from latest OPAL results:

e Good agreement between biased and unbiased jet
measurements, suggesting Qiet = Ejer sin(6/2) is
a suitable scale for biased measurements.

e Good agreement with previous OPAL and DELPHI
measurements, where available.

e Scaling violation (Q)-dependence) is positive at low
x g and negative at high x g for all fragmentation
functions.

e All theory predictions in good agreement with
data for the light quark jets. Poorer agreement
for gluon and b-quark jets, especially at low and
hlgh TE.

e Good agreement between data and MC, except at
high g and small Q).
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Unbiased gluon jets with the
jet boost algorithm

e The jet boost algorithm (Edén & Gustafson,
1998) proposes a way to relate gluon jets in
qqg events to the hemispheres of a gg system.
= unbiased gluon jets

(a) decompose the qqg system into two colour
dipoles:

qg and qg
(b) boost each dipole into a back-to-back frame
(c) re-combine the two components of the gluon

B =COoS a

\\ A “———— £
o'\ d ol . g
\ Ei \ q |
i Y ] | |
B:COS 0
(a) (b) (c)

e Use HERWIG to compare boost algorithm with
‘real’ gg hemispheres: good agreement found for
jet multiplicities and fragmentation functions.

= can compare experimental measurements with
pQCD predictions.
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Unbiased gluon jets (contd.)

OPAL have measured properties of unbiased gluon
jets using the jet boost algorithm, with LEP1 data.

For example:

e Scale-dependence of mean charged particle

multiplicity:
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Coherent soft particle production in
ete— — Z° — qqgg events

e Interference is fundamental to all quantum-
mechanical gauge theories, including QCD.

e Interference is built into the standard shower
evolution /fragmentation models...

However, incoherent models with many tunable
parameters can also describe the data.

= need a direct test for the coherence effects.

e Consider low-energy hadrons emitted at
large angle. They cannot be assigned
to a specific jet, so must treat them
as coherent emissions from multiple jets.

q /ﬁ

g

hadron
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Coherent soft particle production (contd.)

e QCD theory prediction at leading order:

dog = —— dg — —qq| d
03 1Ch [qg—l—qg NCQQQI 02
where

dos = cross section for soft gluon emission

perpendicular to axis of qq event

dos = cross section for soft gluon emission
perpendicular to plane of qqg event

ij = 2sin(6;;/2), where 0;; is the opening
angle between two jets (antenna function)
| S . : :
e The mqq term is responsible for destructive
interference effects.

e Experimental measurements =-

— Test theory prediction
— Verify coherence effect

— Measure the slope, corresponding to C'4/C'r at
leading order.
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Coherent soft particle production (contd.)

DELPHI results use the angular ordered Durham jet
algorithm, with y.: = 0.015 applied to hadronic
events at /s = 91 GeV.

e Compare multiplicities in cones of angle 30°
perpendicular to (i) qqg plane in 3-jet events,
and (ii) qg axis in 2-jet events.

e Fit multiplicity ratios to the destructive
interference term k£ 12 qq, where k = 1 is the fully

coherent LO predlctlon and k = 0 corresponds to
no destructive interference:

k =1.37+0.05 (stat.) + 0.33 (syst.)
[x?/dof = 1.2]

e Measure slope, corresponding to C'4/CF at LO
(c.f. QCD value Cy/Cp = 2.25):

C
C_A = 2.211 £ 0.014 (stat.) £ 0.053 (syst.)
F
[x?/dof = 1.3]
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Coherent soft particle production (contd.)

DELPHI results strongly favour the theory prediction
with full coherence included:
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Combined LEP measurement of
as(Mz) from event shape observables

e Define 6 standard event shape observables, in
events of the type eTe™ — Z/v — hadrons:
T — Thrust Bw — Wide jet broadening

My — Heavy jet mass C — C-parameter
Bt — Total jet broadening Y23 — Durham 2-3 jet transition

e Observables describe the inclusive geometry of
the hadronic final state. No need for explicit
jet-finding or particle identification.

e All 6 observables are infrared-safe, i.e. invariant
under soft or collinear gluon emission, and
relatively insensitive to non-perturbative physics

= ideal test for hard interactions in pQCD.
e Example: Thrust (7):

Thrust axis, 7o, is chosen to maximize the sum of absolute
momentum components for all observed particles projected

alon IS. .
g that axis (Zz p, n|>
T = max
n Zz |D; |
rlQ‘i;_T_
A /,.
PHEEVCA | / \", Penva L= LikF
EVENT ~—_ ‘ ~~ EVENT
(S \ " 7
man o~ l > /‘/// Cew
RRANCHUNES + u " RRANCH INGS
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as(Mz) from event shapes (contd.)

e 2 perturbative theory predictions for each event
shape distribution, parameterised in terms of ay:

— O(a?) calculation using matrix elements:
best available prediction for multi-jet events

— NLLA calculation, resumming logarithmically
enhanced terms to all orders in as:
best available prediction for 2-jet region

Combine calculations using log( ) matching scheme

= prediction for wide range of each observable.

e Use MC models to correct perturbative theory to
hadron level

NB some analyses use power correction models
instead. Use only MC here, in the interests of
consistency between experiments

e Fit theory to experimental distributions

= measure oy

e Final measurements now available at all energies
from ALEPH, DELPHI and L3, including re-
analysis of older data with improved theory and
MC.

Final OPAL measurements expected summer 2004.
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as(Mz) from event shapes (contd.)

e Combine all available LEP a4 measurements,
using consistent theory predictions:

NE T My By Br C Y23

91.2 | ADLO ADLO ADLO ADLO ADL
133.0 | ADLO ADLO A LO A LO AL
161.0 | ADLO ADLO A LO A LO AL
172.0 | ADLO ADLO A LO A LO A LO
183.0 | ADLO ADLO ADLO ADLO ADLO
189.0 | ADLO ADLO ADLO ADLO ADLO
200.0 | ADLO ADLO ADLO ADLO ADLO
206.0 | ADLO ADLO ADLO ADLO ADLO

>>>>> > > >
ol oNoNoNoNoNON®)

(A=ALEPH, D=DELPHI, L=L3, O=0PAL)

e Form covariance matrix between measurements
from all variables, experiments and energies:

- stat. exp. had. theo.
Vig = Vi + Vi + Vi + Vg

Four uncertainty contributions (statistical,
experimental, hadronisation and theory) have
different correlations between measurements.

o After running all input measurements to the Z°
scale, the least-squares fit for o, is a linear
combination of the inputs:

—1
> Vi

Qg = w; (ag); ,  with weights w; = —
ZL: >k Vie'
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as(Mz) from event shapes (contd.)

e Harmonize uncertainties where possible:

Ostat. -

Oexp. -

Ohadr.-

Use values quoted by experiments

Average the values quoted by different
experiments

Take standard deviation of results quoted for

Otheo.-

PYTHIA, HERWIG and ARIADNE for each
input.

= then fit the form on.4r = A4,/Q + B, for
each observable .

method.  Vary several arbitrary parameters
of the theory (not only the renormalisation
scale ).

More details in hep-ph/0312016

e Treat hadronisation and theory uncertainties as
uncorrelated when calculating the weights w;
(otherwise we have large negative weights
= unstable combination).

BUT include 100% correlation when calculating
the hadronisation and theory uncertainties of our
combined as(My).

This approach gives a stable fit... but does
not always minimise the total uncertainty of the
combined measurement.

Matthew Ford Moriond Electroweak, La Thuile, Italy, 22nd March 2004 19

Re-evaluate independently, using “uncertainty band



as(Mz) from event shapes (contd.)

e Complete ag(Mz) combination:

as(Mz) = 0.1202 + 0.0003 (stat.) & 0.0009 (exp.)
+£0.0013 (hadr.) £ 0.0047 (theo.)

e a¢(Mz) combinations for single observables:
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e as(My) combinations for single energies:
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as(Mz) from event shapes (contd.)

e LEP combination method applied to single
experiments:
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Al : Hy |
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e Combinations at single energies, compared with
QCD running prediction:
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Conclusions

e Original tests of QCD are still being performed
with LEP data, more than 3 years after shutdown:

— Unbiased gluon jets (OPAL)
— Coherent soft particle production (DELPHI)

e Combined measurements of o from event shapes
are converging towards a final publication. Results
from all individual experiments will be finalised by
summer 2004.

e Improved g measurements will be possible
when NNLO/NNLLA QCD predictions become
available.  Validity of future improvements to
the event-shape distributions can be tested using
LEP1 data.

e Other LEP QCD results have not been mentioned,
due to lack of time! (power corrections,
colour reconnection, glueball searches, pentaquark
searches. . . )
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